Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1234221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655160

RESUMO

Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.

2.
Front Cell Dev Biol ; 11: 1160154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440924

RESUMO

Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.

3.
Front Cell Dev Biol ; 11: 1134051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152282

RESUMO

Targeted disruption of the soluble adenylyl cyclase (ADCY10; sAC) gene results in male-specific sterility without affecting spermatogenesis, mating behavior, or spermatozoa morphology and count; however, it dramatically impairs sperm motility and prevents capacitation. These phenotypes were identified in sperm from sAC null mice surgically extracted from the epididymis and studied in vitro. Epididymal sperm are dormant, and never exposed to physiological activators in semen or the female reproductive tract. To study sAC null sperm under conditions which more closely resemble natural fertilization, we explored phenotypes of ejaculated sAC null sperm in vivo post-coitally as well as ex vivo, collected from the female reproductive tract. Ex vivo ejaculated sAC null sperm behaved similarly to epididymal sAC null sperm, except with respect to the physiologically induced acrosome reaction. These studies suggest there is a sAC-independent regulation of acrosome responsiveness induced upon ejaculation or exposure to factors in the female reproductive tract. We also studied the behavior of sAC null sperm in vivo post-coitally by taking advantage of transgenes with fluorescently labelled sperm. Transgenes expressing GFP in the acrosome and DsRed2 in the mitochondria located in the midpiece of sperm (DsRed2/Acr3-EGFP) allow visualization of sperm migration through the female reproductive tract after copulation. As previously reported, sperm from wild type (WT) double transgenic mice migrated from the uterus through the uterotubular junction (UTJ) into the oviduct within an hour post-copulation. In contrast, sperm from sAC null double transgenic mice were only found in the uterus. There were no sAC null sperm in the oviduct, even 8 h after copulation. These results demonstrate that sAC KO males are infertile because their sperm do not migrate to the fertilization site.

4.
Nat Commun ; 14(1): 637, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788210

RESUMO

Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.


Assuntos
Inibidores de Adenilil Ciclases , Adenilil Ciclases , Anticoncepcionais Masculinos , Animais , Feminino , Humanos , Masculino , Camundongos , Gravidez , Anticoncepção , Anticoncepcionais Masculinos/farmacologia , Sêmen , Motilidade dos Espermatozoides , Inibidores de Adenilil Ciclases/farmacologia
5.
J Med Chem ; 65(22): 15208-15226, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36346696

RESUMO

Soluble adenylyl cyclase (sAC: ADCY10) is an enzyme involved in intracellular signaling. Inhibition of sAC has potential therapeutic utility in a number of areas. For example, sAC is integral to successful male fertility: sAC activation is required for sperm motility and ability to undergo the acrosome reaction, two processes central to oocyte fertilization. Pharmacologic evaluation of existing sAC inhibitors for utility as on-demand, nonhormonal male contraceptives suggested that both high intrinsic potency, fast on and slow dissociation rates are essential design elements for successful male contraceptive applications. During the course of the medicinal chemistry campaign described here, we identified sAC inhibitors that fulfill these criteria and are suitable for in vivo evaluation of diverse sAC pharmacology.


Assuntos
Adenilil Ciclases , Motilidade dos Espermatozoides , Animais , Masculino , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/metabolismo , Oócitos/metabolismo , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Anticoncepcionais Masculinos/química , Anticoncepcionais Masculinos/farmacologia
6.
Mol Hum Reprod ; 27(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34463764

RESUMO

Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Fertilização/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Adenilil Ciclases/genética , Adenilil Ciclases/fisiologia , Animais , Células Cultivadas , Feminino , Fertilização/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Gravidez , Espermatozoides/fisiologia
7.
ACS Med Chem Lett ; 12(8): 1283-1287, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413957

RESUMO

Soluble adenylyl cyclase (sAC) has gained attention as a potential therapeutic target given the role of this enzyme in intracellular signaling. We describe successful efforts to design improved sAC inhibitors amenable for in vivo interrogation of sAC inhibition to assess its potential therapeutic applications. This work culminated in the identification of TDI-10229 (12), which displays nanomolar inhibition of sAC in both biochemical and cellular assays and exhibits mouse pharmacokinetic properties sufficient to warrant its use as an in vivo tool compound.

8.
Front Cell Dev Biol ; 8: 572735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984353

RESUMO

Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pH i increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pH i increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.

9.
Mol Reprod Dev ; 87(10): 1037-1047, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914502

RESUMO

Mammalian sperm acquire fertilization capacity in the female reproductive tract in a process known as capacitation. During capacitation, sperm change their motility pattern (i.e., hyperactivation) and become competent to undergo the acrosome reaction. We have recently shown that, in the mouse, sperm capacitation is associated with increased uptake of fluorescently labeled deoxyglucose and with extracellular acidification suggesting enhanced glycolysis. Consistently, in the present work we showed that glucose consumption is enhanced in media that support mouse sperm capacitation suggesting upregulation of glucose metabolic pathways. The increase in glucose consumption was modulated by bicarbonate and blocked by protein kinase A and soluble adenylyl cyclase inhibitors. Moreover, permeable cyclic adenosine monophosphate (cAMP) agonists increase glucose consumption in sperm incubated in conditions that do not support capacitation. Also, the increase in glucose consumption was reduced when sperm were incubated in low calcium conditions. Interestingly, this reduction was not overcome with cAMP agonists. Despite these findings, glucose consumption of sperm from Catsper1 knockout mice was similar to the one from wild type suggesting that other sources of calcium are also relevant. Altogether, these results suggest that cAMP and calcium pathways are involved in the regulation of glycolytic energy pathways during murine sperm capacitation.


Assuntos
Glucose/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Metabolismo Energético/genética , Glicólise/fisiologia , Masculino , Camundongos , Camundongos Knockout , Motilidade dos Espermatozoides/genética
10.
Biol Reprod ; 103(4): 791-801, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32614044

RESUMO

Mammalian sperm are stored in the epididymis in a dormant state. Upon ejaculation, they must immediately start producing sufficient energy to maintain motility and support capacitation. While this increased energy demand during capacitation is well established, it remains unclear how mouse sperm modify their metabolism to meet this need. We now show that capacitating mouse sperm enhance glucose uptake, identifying glucose uptake as a functional marker of capacitation. Using an extracellular flux analyzer, we show that glycolysis and oxidative phosphorylation increase during capacitation. Furthermore, this increase in oxidative phosphorylation is dependent on glycolysis, providing experimental evidence for a link between glycolysis and oxidative phosphorylation in mouse sperm.


Assuntos
Metabolismo Energético/fisiologia , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Animais , Sobrevivência Celular , Glucose/metabolismo , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Zona Pelúcida/fisiologia
11.
Biol Reprod ; 103(2): 176-182, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32307523

RESUMO

Efforts to develop new male or female nonhormonal, orally available contraceptives assume that to be effective and safe, targets must be (1) essential for fertility; (2) amenable to targeting by small-molecule inhibitors; and (3) restricted to the germline. In this perspective, we question the third assumption and propose that despite its wide expression, soluble adenylyl cyclase (sAC: ADCY10), which is essential for male fertility, is a valid target. We hypothesize that an acute-acting sAC inhibitor may provide orally available, on-demand, nonhormonal contraception for men without adverse, mechanism-based effects. To test this concept, we describe a collaboration between academia and the unique capabilities of a public-private drug discovery institute.


Assuntos
Anticoncepcionais , Descoberta de Drogas , Adenilil Ciclases , Humanos , Chumbo
12.
J Vis Exp ; (155)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-32065141

RESUMO

Mammalian sperm acquire fertilization capacity in the female reproductive tract in a process known as capacitation. Capacitation-associated processes require energy. There remains an ongoing debate about the sources generating the ATP which fuels sperm progressive motility, capacitation, hyperactivation, and acrosome reaction. Here, we describe the application of an extracellular flux analyzer as a tool to analyze changes in energy metabolism during mouse sperm capacitation. Using H+- and O2- sensitive fluorophores, this method allows monitoring glycolysis and oxidative phosphorylation in real-time in non-capacitated versus capacitating sperm. Using this assay in the presence of different energy substrates and/or pharmacological activators and/or inhibitors can provide important insights into the contribution of different metabolic pathways and the intersection between signaling cascades and metabolism during sperm capacitation.


Assuntos
Glicólise/fisiologia , Análise do Fluxo Metabólico/métodos , Capacitação Espermática/fisiologia , Animais , Masculino , Camundongos , Fosforilação Oxidativa
13.
Br J Pharmacol ; 175(15): 3144-3161, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29723408

RESUMO

BACKGROUND AND PURPOSE: Sperm from many species share the sperm-specific Ca2+ channel CatSper that controls the intracellular Ca2+ concentration and, thereby, the swimming behaviour. A growing body of evidence suggests that the mechanisms controlling the activity of CatSper and its role during fertilization differ among species. A lack of suitable pharmacological tools has hampered the elucidation of the function of CatSper. Known inhibitors of CatSper exhibit considerable side effects and also inhibit Slo3, the principal K+ channel of mammalian sperm. The compound RU1968 was reported to suppress Ca2+ signaling in human sperm by an unknown mechanism. Here, we examined the action of RU1968 on CatSper in sperm from humans, mice, and sea urchins. EXPERIMENTAL APPROACH: We resynthesized RU1968 and studied its action on sperm from humans, mice, and the sea urchin Arbacia punctulata by Ca2+ fluorimetry, single-cell Ca2+ imaging, electrophysiology, opto-chemistry, and motility analysis. KEY RESULTS: RU1968 inhibited CatSper in sperm from invertebrates and mammals. The compound lacked toxic side effects in human sperm, did not affect mouse Slo3, and inhibited human Slo3 with about 15-fold lower potency than CatSper. Moreover, in human sperm, RU1968 mimicked CatSper dysfunction and suppressed motility responses evoked by progesterone, an oviductal steroid known to activate CatSper. Finally, RU1968 abolished CatSper-mediated chemotactic navigation in sea urchin sperm. CONCLUSION AND IMPLICATIONS: We propose RU1968 as a novel tool to elucidate the function of CatSper channels in sperm across species.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Pregnatrienos/farmacologia , Espermatozoides/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ouriços-do-Mar , Espermatozoides/fisiologia
14.
Mol Cell Endocrinol ; 468: 111-120, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29146556

RESUMO

Mammalian fertilization relies on sperm finding the egg and penetrating the egg vestments. All steps in a sperm's lifetime crucially rely on changes in the second messenger cAMP (cyclic adenosine monophosphate). In recent years, it has become clear that signal transduction in sperm is not a continuum, but rather organized in subcellular domains, e.g. the sperm head and the sperm flagellum, with the latter being further separated into the midpiece, principal piece, and endpiece. To understand the underlying signaling pathways controlling sperm function in more detail, experimental approaches are needed that allow to study sperm signaling with spatial and temporal precision. Here, we will give a comprehensive overview on cAMP signaling in mammalian sperm, describing the molecular players involved in these pathways and the sperm functions that are controlled by cAMP. Furthermore, we will highlight recent advances in analyzing and manipulating sperm signaling with spatio-temporal precision using light.


Assuntos
AMP Cíclico/metabolismo , Mamíferos/fisiologia , Optogenética , Espermatozoides/fisiologia , Animais , Luz , Masculino , Transdução de Sinais , Espermatozoides/efeitos da radiação
15.
Mol Hum Reprod ; 23(9): 607-616, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911209

RESUMO

STUDY QUESTION: How and where is pro-ovastacin activated and how does active ovastacin regulate zona pellucida hardening (ZPH) and successful fertilization? STUDY FINDING: Ovastacin is partially active before exocytosis and pre-hardens the zona pellucida (ZP) before fertilization. WHAT IS KNOWN ALREADY: The metalloproteinase ovastacin is stored in cortical granules, it cleaves zona pellucida protein 2 (ZP2) upon fertilization and thereby destroys the ZP sperm ligand and triggers ZPH. Female mice deficient in the extracellular circulating ovastacin-inhibitor fetuin-B are infertile due to pre-mature ZPH. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: We isolated oocytes from wild-type and ovastacin-deficient (Astlnull) FVB mice before and after fertilization (in vitro and in vivo) and quantified ovastacin activity and cleavage of ZP2 by immunoblot. We assessed ZPH by measuring ZP digestion time using α-chymotrypsin and by determining ZP2 cleavage. We determined cellular distribution of ovastacin by immunofluorescence using domain-specific ovastacin antibodies. Experiments were performed at least in triplicate with a minimum of 20 oocytes. Data were pre-analyzed using Shapiro-Wilk test. In case of normal distribution, significance was determined via two-sided Student's t-test, whereas in case of non-normal distribution via Mann-Whitney U-test. MAIN RESULTS AND THE ROLE OF CHANCE: Metaphase II (MII) oocytes contained both inactive pro-ovastacin and activated ovastacin. Immunoblot and ZP digestion assays revealed a partial cleavage of ZP2 even before fertilization in wild-type mice. Partial cleavage coincided with germinal-vesicle breakdown and MII, despite the presence of fetuin-B protein, an endogenous ovastacin inhibitor, in the follicular and oviductal fluid. Upon exocytosis, part of the C-terminal domain of ovastacin remained attached to the plasmalemma, while the N-terminal active ovastacin domain was secreted. This finding may resolve previously conflicting data showing that ovastacin acts both as an oolemmal receptor termed SAS1B (sperm acrosomal SLLP1 binding protein; SLLP, sperm lysozyme like protein) and a secreted protease mediating ZP2 cleavage. LIMITATIONS, REASONS FOR CAUTION: For this study, only oocytes isolated from wild-type and ovastacin-deficient FVB mice were investigated. Some experiments involved oocyte activation by the Ca2+ ionophore A23187 to trigger ZPH. WIDER IMPLICATIONS OF THE FINDINGS: This study provides a detailed spatial and temporal view of pre-mature cleavage of ZP2 by ovastacin, which is known to adversely affect IVF rate in mice and humans. LARGE SCALE DATA: None. STUDY FUNDING AND COMPETING INTEREST(S): This work was supported by the Center of Natural Sciences and Medicine and by a start-up grant of the Johannes Gutenberg University Mainz to W.S., and by a grant from Deutsche Forschungsgemeinschaft and by the START program of the Medical Faculty of RWTH Aachen University to J.F. and W.J.D. There are no competing interests to declare.


Assuntos
Fetuína-B/genética , Metaloproteases/genética , Oócitos/metabolismo , Glicoproteínas da Zona Pelúcida/genética , Zona Pelúcida/metabolismo , Animais , Quimotripsina/química , Exocitose , Feminino , Fertilização In Vitro , Fetuína-B/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Metaloproteases/metabolismo , Metáfase , Camundongos , Oócitos/citologia , Oócitos/crescimento & desenvolvimento , Cultura Primária de Células , Proteólise , Transdução de Sinais , Espermatozoides/citologia , Espermatozoides/fisiologia , Glicoproteínas da Zona Pelúcida/metabolismo
16.
Sci Rep ; 6: 36764, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833122

RESUMO

Protamines are arginine-rich DNA-binding proteins that replace histones in elongating spermatids. This leads to hypercondensation of chromatin and ensures physiological sperm morphology, thereby protecting DNA integrity. In mice and humans, two protamines, protamine-1 (Prm1) and protamine-2 (Prm2) are expressed in a species-specific ratio. In humans, alterations of this PRM1/PRM2 ratio is associated with subfertility. By applying CRISPR/Cas9 mediated gene-editing in oocytes, we established Prm2-deficient mice. Surprisingly, heterozygous males remained fertile with sperm displaying normal head morphology and motility. In Prm2-deficient sperm, however, DNA-hypercondensation and acrosome formation was severely impaired. Further, the sperm displayed severe membrane defects resulting in immotility. Thus, lack of Prm2 leads not only to impaired histone to protamine exchange and disturbed DNA-hypercondensation, but also to severe membrane defects resulting in immotility. Interestingly, previous attempts using a regular gene-targeting approach failed to establish Prm2-deficient mice. This was due to the fact that already chimeric animals generated with Prm2+/- ES cells were sterile. However, the Prm2-deficient mouse lines established here clearly demonstrate that mice tolerate loss of one Prm2 allele. As such they present an ideal model for further studies on protamine function and chromatin organization in murine sperm.


Assuntos
Infertilidade Masculina/genética , Protaminas/genética , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Éxons , Feminino , Estudos de Associação Genética , Loci Gênicos , Haploinsuficiência , Histonas/metabolismo , Masculino , Camundongos , Protaminas/metabolismo , Deleção de Sequência , Motilidade dos Espermatozoides , Espermatogênese , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia
17.
Mol Cell Endocrinol ; 427: 143-54, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987518

RESUMO

During epididymal maturation, sperm acquire the ability to swim progressively by interacting with proteins secreted by the epididymal epithelium. Beta-defensin proteins, expressed in the epididymis, continue to regulate sperm motility during capacitation and hyperactivation in the female reproductive tract. We characterized the mouse beta-defensin 41 (DEFB41), by generating a mouse model with iCre recombinase inserted into the first exon of the gene. The homozygous Defb41(iCre/iCre) knock-in mice lacked Defb41 expression and displayed iCre recombinase activity in the principal cells of the proximal epididymis. Heterozygous Defb41(iCre/+) mice can be used to generate epididymis specific conditional knock-out mouse models. Homozygous Defb41(iCre/iCre) sperm displayed a defect in sperm motility with the flagella primarily bending in the pro-hook conformation while capacitated wild-type sperm more often displayed the anti-hook conformation. This led to a reduced straight line motility of Defb41(iCre/iCre) sperm and weaker binding to the oocyte. Thus, DEFB41 is required for proper sperm maturation.


Assuntos
Epididimo/fisiologia , Cauda do Espermatozoide/fisiologia , Espermatozoides/fisiologia , Zona Pelúcida/metabolismo , beta-Defensinas/fisiologia , Reação Acrossômica , Animais , Feminino , Fertilidade , Técnicas de Introdução de Genes , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia , Espermatogênese/genética , Espermatozoides/metabolismo , beta-Defensinas/genética
18.
Elife ; 52016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27003291

RESUMO

The cellular messenger cAMP regulates multiple cellular functions, including signaling in cilia and flagella. The cAMP dynamics in these subcellular compartments are ill-defined. We introduce a novel FRET-based cAMP biosensor with nanomolar sensitivity that is out of reach for other sensors. To measure cAMP dynamics in the sperm flagellum, we generated transgenic mice and reveal that the hitherto methods determining total cAMP levels do not reflect changes in free cAMP levels. Moreover, cAMP dynamics in the midpiece and principal piece of the flagellum are distinctively different. The sole cAMP source in the flagellum is the soluble adenylate cyclase (SACY). Although bicarbonate-dependent SACY activity requires Ca(2+), basal SACY activity is suppressed by Ca(2+). Finally, we also applied the sensor to primary cilia. Our new cAMP biosensor features unique characteristics that allow gaining new insights into cAMP signaling and unravel the molecular mechanisms underlying ciliary function in vitro and in vivo.


Assuntos
Técnicas Biossensoriais/métodos , Cílios/química , AMP Cíclico/análise , Flagelos/química , Animais , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Humanos , Masculino , Camundongos Transgênicos , Sensibilidade e Especificidade , Espermatozoides/química
19.
Elife ; 42015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601414

RESUMO

Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.


Assuntos
Fertilização , Optogenética/métodos , Transdução de Sinais , Espermatozoides/metabolismo , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , AMP Cíclico , Fertilidade/efeitos da radiação , Fertilização/efeitos da radiação , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Protaminas/genética , Transdução de Sinais/efeitos da radiação , Solubilidade , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Raios Ultravioleta
20.
EMBO Rep ; 15(7): 758-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24820036

RESUMO

Synthetic endocrine disrupting chemicals (EDCs), omnipresent in food, household, and personal care products, have been implicated in adverse trends in human reproduction, including infertility and increasing demand for assisted reproduction. Here, we study the action of 96 ubiquitous EDCs on human sperm. We show that structurally diverse EDCs activate the sperm-specific CatSper channel and, thereby, evoke an intracellular Ca(2+) increase, a motility response, and acrosomal exocytosis. Moreover, EDCs desensitize sperm for physiological CatSper ligands and cooperate in low-dose mixtures to elevate Ca(2+) levels in sperm. We conclude that EDCs interfere with various sperm functions and, thereby, might impair human fertilization.


Assuntos
Disruptores Endócrinos/farmacologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Acrossomo/metabolismo , Potenciais de Ação/efeitos dos fármacos , Ligação Competitiva , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Disruptores Endócrinos/química , Exocitose/efeitos dos fármacos , Humanos , Ligantes , Masculino , Ligação Proteica , Motilidade dos Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...